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Abstract

Adequate sleep is critical for overall healthy functioning. Insufficient sleep has

been linked to a decline in attention and cognitive function, which poses a potential

risk for vehicle crashes. This paper aims to study the impact of sleep on fatal

vehicle crashes. For the short-term analysis, I explored the variation in sunset times

throughout the year in a specific location. By using sunset time as an instrument,

I found that a one-hour delay in sunset leads to a decrease of approximately 12

minutes in weekly sleep duration. Additionally, a one-hour increase in monthly sleep

leads to about a 2.4% reduction in fatalities. For the long-term analysis, I employed

two different approaches. First, I utilized the geographical variation in sunset time

across counties within a time zone. However, the results from this approach were not

statistically significant. Second, I applied spatial regression discontinuity, focusing

on the timing of sunset at a time-zone boundary. I found that there is no consistent

and statistically significant effect of the later sunset side on the fatalities. This paper

can help in creating a better policy solution regarding DST and clock changes, as

well as designing social schedules that promote healthy sleep patterns, which are

crucial for both health and productivity.

∗University of California, Riverside



1 Introduction

Sleep is crucial for both human health and productivity, but its importance remains largely

understudied in the fields of health and labor economics. Insufficient sleep is associated

with fatigue-related accidents and injuries (Dinges, 1995; Lockley et al., 2007; Barnes

and Wagner, 2009), attention, cognitive ability, coordination, motor skills, and processing

speed (Dinges and Powell, 1985; Drummond et al., 2005; Banks and Dinges, 2007; Lim

and Dinges, 2010), as well as productivity and psychological well-being (Bessone et al.,

2021). However, identifying variations in sleep patterns that are both explainable and

not strongly correlated with significant lifestyle choices poses a challenge. Measuring

sleep outcomes is further complicated by the frequent delay, cumulative nature, and the

challenge of quantification in large datasets. Therefore, by utilizing plausibly exogenous

variations in sleep patterns, I aim to assess the potential impact of sleep-related cognitive

outcomes on an immediate and measurable outcome: fatal vehicle crashes.

The timing of sunset and sunrise changes throughout the year in a specific location, as

well as across different locations within a time zone. However, despite this natural varia-

tion, our work schedules and school start times often remain inflexible. These rigid school

and work hours force individuals to wake up at the same early hour, preventing them from

adjusting for this time difference by sleeping in later. This forced synchronization can

negatively impact our circadian rhythms, ultimately affecting the duration and quality of

our sleep. Consequently, this phenomenon produces both seasonal or short-term effects

within a given year and long-term geographical effects across locations within a time zone.

I aim to address the following question: What are the short-run and long-run effects

of sleep duration on fatal vehicle crashes in the United States? To answer this question, I

utilize three different strategies to isolate the various factors that contribute to differences

in sleep patterns caused by astronomical and time-keeping sources. These strategies
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consist of two instrumental variable (IV) approaches and a spatial regression discontinuity

design (RDD).

For the instrumental variable (IV) approach, I exploit two different sources of iden-

tifying variation in sleep duration. Variation in sunset time throughout the year in one

location isolates a short-term, seasonal variation in sleep duration, while geographic vari-

ation in sunset time across counties within the same time zone isolates long-term sleep

differences across different areas. In the short term, there is variation in sunset time

within a county throughout the year. For example, a later sunset in the summer could

lead to a shorter sleep duration. In the long term, there are differences in sunset time

among various counties in a time zone. For instance, the sunset is later for locations

further west than for locations further east, and people in the western part of the time

zone would sleep less.

The regression discontinuity design (RDD) strategy exploits the sharp discontinuity

in sunset time across time zone borders. There is a distinct discontinuity in sunset time

around the border, with sunset occurring approximately one hour later for counties sit-

uated on the right side of the time zone boundary compared to those on the left. For

both strategies, I use sleep data from the American Time Use Survey (ATUS) and vehicle

fatality data from the Fatality Analysis Reporting System (FARS).

Both the IV and RDD yield interesting first-stage results. The delay in sunset time

can potentially disrupt the production of melatonin, consequently pushing sleep schedules

to a later time. Using the seasonal, short-run IV method, I discovered that a one-hour

delay in sunset results in a decrease of approximately 12 minutes in weekly sleep duration.

According to related research, a one-hour delay in sunset time within a particular location

is associated with a reduction in nighttime sleep by approximately 20 minutes per week

(Gibson and Shrader, 2018). The results from the RDD analysis indicate that a one-

hour delay in sunset leads to an average decrease of around 10 minutes in sleep duration.

This finding aligns with the study conducted by Giuntella and Mazzonna (2019), which
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reported a decrease of 19 minutes in sleep duration due to a delayed sunset.

Previous research conducted by Giuntella and Mazzonna (2019) focused on the years

2003 to 2013 and found that employed individuals tend to sleep less when living on the

side of the time zone border with later sunsets. When I replicate this analysis using the

same dataset and time frame, my results closely mirror theirs. However, an interesting

twist arises when I expand the analysis to include data from 2014 to 2019. In this later

period, I observe a contrasting trend where employed individuals actually sleep more if

they reside on the side of the time zone border with later sunsets.

Using the seasonal, short-term IV approach, I found that a one-hour increase in

monthly sleep leads to a decrease of about 2.4% in fatalities in the short run. Related

research has shown that the transition into Daylight Saving Time (DST) during the spring

season leads to a significant 5.6% increase in fatal crashes, and this effect remains consis-

tent for a period of six days following the transition (Smith, 2016). Based on the RDD

methodology, my research findings suggest that the impact of residing on the late sunset

side has no statistically significant or consistent effects on fatal crashes among employed

individuals. One potential explanation for this phenomenon could be that people gradu-

ally adapt to the extended daylight hours and eventually adjust their sleeping patterns,

thereby negating any significant influence on the occurrence of fatalities.

This paper contributes to three strands of literature in economics. First, it contributes

to the lab studies of sleep in medical research by using observational data to study the

causal impact of sleep on fatalities, providing understanding in real-world situations.

There is a plethora of research on lab studies in sleep, which shows that sleep deprivation

has a negative impact on attention, cognitive ability, coordination, motor skills, and pro-

cessing speed (Dinges and Powell, 1985; Drummond et al., 2005; Banks and Dinges, 2007;

Lim and Dinges, 2010). Second, this paper contributes to the recent literature focusing

on the impact of sleep on productivity and health by examining both the short-run and

long-run effects directly from sleep data on fatalities using the IV and RDD approaches.
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Previous research has found associations between sleep and various outcomes, including

fatal vehicle crashes (Smith, 2016), wages (Gibson and Shrader, 2018), productivity and

psychological well-being (Bessone et al., 2021), functioning of financial markets (Kamstra

et al., 2000), hospital admissions (Jin and Ziebarth, 2020), cognitive skills and depression

symptoms (Giuntella et al., 2017), and health outcomes (Giuntella and Mazzonna, 2019).

Third, this paper contributes to the research that estimates the effects of school start

times on academic achievement (Dills and Hernandez-Julian, 2008; Carrell et al., 2011;

Edwards, 2012; Heissel et al., 2017; Avery et al., 2019) by providing additional causal

evidence to assist policy makers in making decisions regarding school start times.

The rest of this paper proceeds as follows. Section 2 reviews the literature encom-

passing sleep studies in the medical fields and empirical evidence of sleep in Economics.

Section 3 describes the data used in this paper. Section 4 illustrates the identification

strategy and the empirical methods. Section 5 reports the main results, and Section 6

discusses the robustness checks. Section 7 concludes and discusses paths for future re-

search.The following sections outline the structure of this paper. Section 2 provides a

comprehensive review of the existing literature on sleep studies in both medical and eco-

nomic fields. Additionally, it presents empirical evidence related to sleep in Economics.

Section 3 provides a detailed description of the data utilized in this study. In Section

4, the identification strategy and empirical methods employed are explained. The main

findings are reported in Section 5, while Section 6 discusses the robustness checks con-

ducted. Finally, Section 7 concludes the paper and suggests potential avenues for future

research.
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2 Literature Review

2.1 Lab Studies of Sleep in Medical Research

There exists a plethora of research on lab studies in sleep, which shows that sleep depri-

vation has a negative impact on attention, memory, and mood. For example, Banks and

Dinges (2007) reviewed recent experiments on chronic sleep restriction and found that

restricting sleep can result in attention lapses, slowed working memory, reduced process-

ing speed, depression, and preservative thinking. They also suggest that long-term sleep

deprivation leads to unhealthy physiological results.

Besides chronic sleep restriction, Lim and Dinges (2010) reviewed studies on the im-

pact of short-term sleep deprivation on cognition. They found that simple attention is

strongly affected by short-term sleep deficit. The authors believe that sleep deprivation

can pose significant safety risks, and implementing countermeasures targeting simple at-

tention would be the most effective way to prevent accidents in industries.

One example of measuring simple attention is the laboratory study of the Psychomotor

Vigilance Test (PVT) (Dinges and Powell, 1985). The PVT was initially invented in 1985

to measure sustained attention and has since become the most widely used test in studies

of sleep and circadian rhythm research. Numerous studies have demonstrated that the

PVT is a highly sensitive indicator of sleep deprivation.

A laboratory study conducted by Drummond et al. (2005) investigated the neural basis

of PVT and found that optimal performance is dependent on the brain region responsible

for these functions after a normal night of sleep. On the other hand, poor performance

following sleep deprivation activates the brain’s “default mode.” This finding supports

previous studies suggesting that sleep has an impact on attention.

This paper contributes to this literature by utilizing observational data to examine

the causal impact of sleep on fatalities, providing insights into real-world situations.
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2.2 Empirical Evidence on Sleep in Economics

Despite the extensive body of medical research highlighting the hazards of sleep depriva-

tion, economists have only recently begun to explore the economic implications of insuf-

ficient sleep through empirical analysis. This paper aims to contribute to the emerging

field of research on the consequences of sleep deprivation within the economic literature.

2.2.1 Productivity and Health

First, this paper is linked to the literature of estimating the impact of sleep on produc-

tivity and health (Kamstra et al., 2000). In a recent study, Smith (2016) uses regression

discontinuity (RD) and day-of-year fixed effects (FE) model to study the short-run effects

of Daylight Saving Time (DST) on fatal crashes and provides evidence of 5.6% increase

in fatalities for six days after the spring transition of DST. He decomposes the aggregate

effect of DST into an ambient light and sleep mechanism and finds that sleep deprivation

is the channel that results in more fatal crashes while changing ambient light merely real-

locates fatalities within a day. In addition, he discovers that losing an hour of sleep raises

the risk of being in a drowsiness-related fatal crash by 46%.

I differentiate from Smith (2016), as rather than studying the short-run effects of DST

on national fatalities using RD and FE models and analyzing sleep mechanism indirectly

without using any sleep data or measurements, I examine both the short-run and long-

run effect directly from sleep data on county-level fatal crashes using the IV and RDD

approach.

The results would help us to form a better policy solution such as whether to keep

DST and end clock changes. The benefits of the DST include decreased crime (Doleac

and Sanders, 2015) and cost of the DST would be related to sleep loss with transitions.

A better solution would keep the benefits of DST while diminishing the costs of the tran-

sition. For example, on March 15, 2022, the U.S. Senate passed the Sunshine Protection
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Act of 2021, which would keep a permanent DST and end clock changes, but this Act has

not made it to the U.S. House for discussion. In addition, the results could contribute to

constructing social schedules such as work schedules and school start times in ways that

promote sleeping, which is related to health and productivity.

This paper is also linked to Gibson and Shrader (2018), who use IV specification to

study the impact of sunset variation within a location over time and sunset variation

within a time-zone on wages and find that a one hour increase in weekly sleep results

in 1.1% increases in wages in the short run and 5% in the long run. I employ a similar

econometric approach to examine the effects of monthly sleep on fatal vehicle crashes at

the county level, both in the short run and long run. Additionally, I incorporate the RDD

method to estimate the long run effects.

A recent field experiment by Bessone et al. (2021) shows that a randomized three-

week treatment to improve sleep in Chennai, India, increases sleep time by 27 minutes at

night, which has no significant impact on cognition, productivity, or well-being. However,

short naps in the afternoon help to improve the productivity, psychological well-being,

and cognition. Instead of using field experiment, I am using non-experimental data to

examine the impact of sleep.

Furthermore, Jin and Ziebarth (2020) study the hospital admissions impact of DST.

Using an event study method, they find that the hospitalization rates decrease after the

transition into standard time by adjusting the time back by one hour during fall and this

effect continues for four days after the fall transition. My paper differs by using IV and

RDD instead of event study method to estimate the short-run causal impact of sleep on

traffic crashes.

In addition, Giuntella et al. (2017) uses IV method to analyze the causal impact of

sleep deprivation on cognition and depression of older workers in urban China. They use

sunset time as instrument and find that a later sunset time decreases sleep time and an

increase in sleep duration could improve cognition and reduce depression. I am using the
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similar strategy of IV, but I am focusing on the short-run effects of sunset variation in

the United States instead of the long-run impacts in urban China.

Another paper by Giuntella and Mazzonna (2019) uses spatial regression discontinuity

design (RDD) to examine the health and income effects due to the discontinuity in sunset

time at a time-zone boundary in the U.S. and find that an extra hour in sunset time

leads to an average of 19 minutes decrease in sleep duration. In addition, they find the

insufficient sleep is associated with negative health outcomes such as obesity, diabetes,

cardiovascular diseases, and breast cancer. Rather than analyzing the long-term effects

of exposure of light in the evening on health outcomes, I aim to measure both the short-

run and long-run effects of sunset timing on fatalities. This paper confirms that sleep

deprivation could affect the productivity and health of people through increasing the risk

in fatal vehicle crashes.

2.2.2 Academic Achievement

Second, this paper is related to the research that estimate the effects of school start times

and sleep on academic achievements (Dills and Hernandez-Julian, 2008; Edwards, 2012).

Researchers find that starting school later has a significant positive impact on academic

scores for students and sleep is one of the mechanisms that could explain this impact. For

example, Carrell et al. (2011) use the policy adjustments in the daily timetable at the US

Air Force Academy as well as randomized allocation of freshman students to courses and

conclude that starting school 50 minutes later has substantial constructive effect on test

scores, corresponding to a one-standard-deviation increase in teacher quality.

In addition, a related work by Heissel et al. (2017) uses students moving across time

zone border in Florida as instrument for hours of sunlight and finds that changing school

start time one hour later relative to sunrise improves academic performance for adolescents

in math and reading. The results are in line with sleep researchers’ findings, which shows

that later start times are beneficial for adolescent learning. However, it is not clear if
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sleep has a direct causal impact on the academic scores.

A field experiment by Avery et al. (2019) studies the effect of increased sleep on health

and academic outcomes using commitment devices and monetary incentives. They find

that the subjects in the treatment group are more likely to increase sleep duration and the

treatment has positive but small impact on health and academic outcomes. This paper

contributes to this literature by analyzing the direct causal impact of sleep on fatal vehicle

crashes using non-experimental data to provide insights in the real-world scenarios.
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3 Data

3.1 Individual Sleep Duration (ATUS)
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Figure 1: Sleep Duration

This graph shows the average sleep duration by day of week and distribution of sleep duration
from ATUS (2004-2019).

The individual sleep duration comes from the American Time Use Survey (ATUS)

sponsored by the U.S. Bureau of Labor Statistics (BLS) and conducted by the U.S. Census

Bureau since 2003. ATUS is the first continuous survey on time use in the United States.

Individuals are randomly selected from the households that just finished the eight-month

interview for the Current Population Survey (CPS) and the interviews for ATUS are

conducted between two and five months after the last CPS interview. The goal of ATUS

is to understand how people allocate their time.

The time diary of the ATUS is conducted through computer-assisted telephone inter-

views. The respondent is asked to recall the time spend in each activity from 4:00 am on

the previous day to 4:00am on the interview day. This method allows the time diaries to

be summed to 24 hours to minimize possible biases. For each activity, the ATUS gathers

either the ending time or the duration of the activity and the interviewer collects the

answers verbatim, which are coded later (Hamermesh et al., 2005).
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The diary measures of sleep in ATUS are usually higher than other sleep durations

measured in the stylized questions, such as Behavioral Risk Factor Surveillance System

(BRFSS), by about 1.7 hours. The average sleep duration in ATUS is about 8.7 hours per

night while the average sleep duration in BRFSS is about 7 hours (Kaplan et al., 2020).

The explanation is that the diary measures tend to include napping, dozing, falling asleep,

and waking up (Basner et al., 2007).

I will use the county level sleep data and the county information is only available after

2004. To analyze the impact of sleep before COVID-19 pandemic, I include the sleep data

from 2004 to 2019. There are 210,586 observations from 2003 to 2020. In the analysis, I

include only the individuals in the labor force, which is from the ATUS-CPS (2003-2020).

The CPS does not include county information for individuals who live in counties with

less than 100,000 residents, so I could only match 38.5% of the sample. Therefore, the

results from ATUS are more representative for counties that are more urban.

I then limit the analysis for individuals with age between 18 to 55 to avoid the issues

of retirement and high-school age workers. I also restrict the sample for people who sleep

between 2 to 16 hours per night. People who sleep less than 2 hours account for less than

1% of the whole sample. After the limitations, the sample includes 53,552 observations

and 49,671 were employed, which accounts for 92.8% of the sample.

In the analysis, I include the socio-demographic variables, such as age, race, sex,

education, marital status, nativity status, and number of children. I also include the

geographic characteristic, such as latitude and indicators for large counties and costal

counties. Figure 1 depicts the distribution of the sleep duration and shows that people

tend to sleep more during weekends. Table 1 shows the summary statistics for the analysis

after I combine the data from ATUS and FARS. The average sleep duration in my sample

is 8.61 hours.

Using the interview date and the location (latitude and longitude), I could determine

the daily sunset time for everyone in the sample from 2004 to 2019 as well as the average
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sunset time in the related county in 2012. I used the R studio package “suncalc” to

calculate the sunset time. The calculations in this package are based on the formulas in

Astronomy Answers about position of the sun and the planets. I checked the sunset time,

which is similar as the sunset time calculated using the National Oceanic and Atmospheric

Administration (NOAA) Sunrise/Sunset and Solar Position Calculators.

Table 1: Summary Statistics

(1) (2) (3) (4) (5)
All Female Male Employed Unemployed

mean/sd mean/sd mean/sd mean/sd mean/sd

Crashes per 100,000 Population 0.74 0.74 0.73 0.74 0.72
(0.46) (0.47) (0.46) (0.47) (0.45)

Sleep Duration (Hours) 8.61 8.69 8.52 8.56 9.25
(2.05) (2.04) (2.06) (2.04) (2.13)

Age 38.75 38.61 38.90 39.01 35.28
(9.71) (9.74) (9.67) (9.54) (11.13)

White 0.78 0.75 0.80 0.78 0.69
(0.42) (0.43) (0.40) (0.41) (0.46)

Black 0.14 0.17 0.12 0.14 0.23
(0.35) (0.37) (0.32) (0.34) (0.42)

High School 0.48 0.48 0.48 0.47 0.60
(0.50) (0.50) (0.50) (0.50) (0.49)

College 0.44 0.45 0.43 0.45 0.21
(0.50) (0.50) (0.49) (0.50) (0.41)

Married 0.54 0.50 0.57 0.55 0.39
(0.50) (0.50) (0.49) (0.50) (0.49)

Nativity Status 0.77 0.79 0.76 0.77 0.75
(0.42) (0.41) (0.43) (0.42) (0.43)

Number of Children 1.09 1.11 1.06 1.08 1.14
(1.15) (1.12) (1.18) (1.14) (1.23)

Holiday 0.02 0.02 0.02 0.02 0.02
(0.13) (0.13) (0.12) (0.13) (0.13)

Latitude 37.25 37.20 37.29 37.26 37.02
(5.05) (5.07) (5.04) (5.05) (5.07)

Large County 0.68 0.68 0.68 0.68 0.72
(0.47) (0.47) (0.46) (0.47) (0.45)

Weekend 0.51 0.51 0.50 0.51 0.50
(0.50) (0.50) (0.50) (0.50) (0.50)

N 36296 18569 17727 33811 2485

Data are from ATUS (2004-2019) and FARS (2004-2019). Latitude and longitude are from US Census
Bureau. The sample is restricted to people who are in the labor force and aged between 18 and 55. The
crashes data from FARS are matched to the ATUS at county-year-month level.
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3.2 Fatal Vehicle Crashes (FARS)

The fatal vehicle crash data are obtained from the Fatality Analysis Reporting System

(FARS), developed by the National Center of Statistics and Analysis (NCSA) of the

National Highway Traffic and Safety Administration (NHTSA). FARS encompasses fatal

vehicle crash data from all 50 states in the United States since 1975. To be included in

FARS, a crash must involve a motor vehicle traveling on a public trafficway and must

result in the death of at least one motorist or non-motorist within 30 days of the crash.

FARS includes the exact time and location of the accident, as well as the road type,

light condition, and weather. I will be using the data from 2004 to 2019, which includes

539,052 observations. There are about 33,690 fatal crashes every year and about 92 fatal

crashes per day for the entire United States. Fatal crashes are more likely to happen from

4pm to midnight and on the weekends.

The non-fatal crashes data are not available for the whole nation since many states do

not maintain a standard database for the non-fatal vehicle crashes. For fatal crashes data,

NHTSA cooperates with each state government to collect the fatal crashes in a standard

format. Analyzing only the fatal vehicle crashes creates a lower bound on the impact of

sleep on all types of vehicle crashes.

4 Empirical Methods

4.1 Identification Strategy 1: Sunset Time as Instrument (IV)

This study aims to discover the causal impact of sleep durations on fatal vehicle crashes.

One problem is that there may exist omitted variables bias, which indicates there are

variables that are correlates with both sleep duration and crashes. Another concern is

the reverse causality, which refers to the situation that the fatal vehicle crashes could

13



affect sleep duration. Therefore, I use the IV strategy to measure the causal relationship

between sleep and crashes. Specifically, my identification strategy relies on both the sunset

variation across year in one location for short term estimate as well as the locational

variation in sunset time across the United States for long run effects.

My strategy is the same as what Gibson and Shrader (2018) utilize to explore the

causal influence of sleep duration on wages in the United States, and it is also linked to

the regression discontinuity method used to estimate the sleep difference across time-zone

border on health outcomes (Giuntella and Mazzonna, 2019). I will first introduce the

background of the relationship between sunset and sleep and then I will discuss each the

short-run and long-run specification separately.

4.1.1 Relationship between Sunset and Sleep

The timing and duration of sleep are strongly associated with the rising and setting of

sun. This biological relationship between sleep and daylight provides the reasoning for

why selecting sunset as instrument for sleep. Roenneberg et al. (2007) show that light

is the strongest signal from the environment for human biological clock and find that

sun time, rather than social time, has the primary influence on the synchronization of

human circadian rhythm. The circadian system is a strong force that synchronize with

environmental stimuli. Nearly every living creature has an internal clock that is set to

the Earth’s 24-hour rotational timetable. This internal circadian rhythm helps the body

to anticipate the external environment, such as when the sun will rise and set, as well

as the optimal times to sleep, wake, eat, and exercise. Individuals who do not sleep at

their ideal circadian timing or who are sleep deprived compared to intrinsic sleep need

are facing more negative health outcomes (Ashbrook et al., 2020). Due to the circadian

rhythm, the variation in daylight could affect sleep habits.

Location and seasonal variation in sunset time could all cause a change in sleep pat-

terns. Researchers find that individuals living in a location with later sunset time tend
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to sleep later (Gibson and Shrader, 2018; Giuntella and Mazzonna, 2019). The sunlight

changes across year also affect the sleep patterns (Hubert et al., 1998). Latitude and

longitude could both influence the sunset and sunrise time. For example, Campante and

Yanagizawa-Drott (2015) use the interaction of latitude and the rotation of lunar calen-

dar to identify the causal relationship between the length of Ramadan fasting and the

economic growth in Muslim countries. In addition, Brockmann et al. (2017) explore the

associations between sleep duration and latitude in Chile and find that people sleep longer

with increasing latitude. Furthermore, Friborg et al. (2012) analyze the associations be-

tween seasonal variations in day length and sleep comparing Ghana and Norway and find

that lack of daylight was related to change of sleep patterns. The change in sleep pattern

could affect the sleep duration due to work and school scheduling.

Rigid work and school schedule could disrupt human circadian rhythms and cause

health and productivity issues. In the recent economic literature, the distribution of time

among market work, home production work, leisure, and rest has been a major topic

(Becker, 1965; Gronau, 1977; Aguiar and Hurst, 2007; Guryan et al., 2008; Aguiar et al.,

2013; Carneiro et al., 2015; Bastian and Lochner, 2020). The allocation of time could

depend on the working and school schedules, and the social times are usually synchronized

for optimal welfare (Weiss, 1996; Hamermesh et al., 2008). If people could wake up late to

compensate sleep late, then the sleep duration would be the same. However, workers and

students have the forced synchronization of work and school scheduling, thus later sunset

and bedtime would shorten sleep duration in the short and long term. A decrease in sleep

duration could disrupt human circadian rhythms, which could post negative effects on

health and productivity (Cappuccio et al., 2010).

4.1.2 Daily Sunset Time Variation for Short-Run Analysis

In the short run, I will use the daily sunset variation in one location across the year as the

instrument. Figure 2 shows that the sunset time is like a cosine wave over a year. The
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Figure 2: Daily Sunset Hour - Short Run Analysis

This graph depicts the daily sunset hours for counties sampled by ATUS in the continental
United States in 2012. The y-axis shows the sunset hour in 24 hour time. For example, 16:00
is the same as 4:00pm. Mar 11 is when the DST starts and Nov 4 is when the DST ends in
2012. Jun 20 is the summer solstice and Dec 21 is the winter solstice. The setup of this graph
is similar to Gibson and Shrader (2018).

latitude of the location determines the amplitude of the wave, and the longitude variation

within a time zone defines the average sunset time, which is used to estimate the long-run

effects. The substantial spring and fall leaps generated by DST is another characteristic

of the sunset time. There is a regular seasonal pattern, and the sunset time is generally

late during summer and early during winter. The later sunset time in the summer could

result in shorter sleep duration, which could impact the attention and disrupt circadian

rhythm.

In terms of the instrument validity, the first requirement is the instrument of sleep must

be strongly correlated with sleep. The F test for the first stage is 11.94 for unconditional

model and 10.93 for conditional model, which are both greater than 10. This suggest that

this instrument has a strong first stage. The second requirement is that the instrument

of sleep cannot be correlated with the error term in the equation of interest. If the
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instrument meets this requirement, then this instrument satisfy the exclusion restriction.

The exclusion restriction validity requires that other crashes determinants do not correlate

with daily sunset time in a location. Since sunset time follows a predictable seasonal

pattern, the major challenge to this assumption is seasonally varying crash determinants.

One potential concern of the identification strategy is that sunset time varies season-

ally, so does sunrise time and daylight duration. Medical research show that the length

of daylight has a positive effect on mood as the sunlight could help the body to produce

vitamin D, which could affect mood and depression (Murase et al., 1995; Lambert et al.,

2002; Kjærgaard et al., 2012; Friborg et al., 2012). Furthermore, exposure to more light

in the evening could provide incentive to exercise more (Wolff and Makino, 2012). If day-

light influences both crashes and sleep through mood or another channel, the short-run

results could be misleading. To address the seasonality issue, I include the controls for

seasonality, such as year-month fixed effects and I got the similar results. I assume that

the crash determinants such as the mood due to seasonality do not correlate with the

sunset time.

Other confounding factors may include icy road in winter and drinking behaviors etc.

Those unobserved confounding factors could be correlated with sunset time as well as

the crashes. Including the time fixed effects could alleviate the concern of different road

conditions in various seasons. Adding the county fixed effects could address the issue

that the north and south locations would have different road conditions during winters.

I use sunset time instead of sunrise time because the rigid work and school schedules

would affect the wake up time, and the sunset time may have a larger impact on the sleep

duration for employed people.

4.1.3 Average Sunset Time Variation for Long-Run Analysis

In the long run, I will use the average sunset variation across locations as instrument.

Figure 3 depicts the average sunset time for the continental United States in 2012. The
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Figure 3: Average Sunset Hour - Long Run Analysis

This graph shows the average sunset hours for all counties in the continental United States in
2012. I used sunset time package “suncalc” from R studio to calculate the average sunset time.
I separated counties into 5 quintile based on the average sunset time in 2012. Darker color
implies later sunset. The time zone border lines are in blue. The setup of this graph is similar
to Gibson and Shrader (2018) and Giuntella and Mazzonna (2019).

eastern part gets darker late in a time zone, which indicate that the people who live in

eastern areas are more likely to go to bed later and sleep less. Within a U.S. time zone,

the largest variance in sunset time is around 1 hour. The average sunset time is constant

regardless of latitude. Since all counties in the continental U.S. have almost the same

average annual daylight, this is not a confounding factor in the long-run study.

Time and scheduling were not consistent across the United States until the develop-

ment of the railroad traffic after the Civil War. America’s railroads started the first U.S.

time zones on November 18, 1883, known as Standard Railroad Time. Later in 1918,

the Standard Time Act established the current four continental U.S. time zones including

Eastern, Central, Mountain, and Pacific. Since then, the time zones have been in effect,

with only minor adjustments at the margins. Currently, 12 of the 48 continental states

are in more than one time zone (Bartky, 1989; Hamermesh et al., 2008).

The purpose of the invention of DST was to save energy during times of war. In 1918,

the United States established a formal DST schedule, but it was overturned when World
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War I ended due to its inconvenient nature. In 1966, President Johnson signed the current

U.S. DST scheme into law. Each state can surpass the law by enacting its own legislation.

In 2007, the DST time was extended by four weeks. Except for Arizona and Hawaii, most

states in the United States implement DST, and Indiana began to adopt DST in 2006

(Kamstra et al., 2000).

State and local government could require the Department of Transportation (DOT)

to change time zones (Valpando, 2013). This alteration of time zone borders suggest that

time zone is not set randomly. Counties have changed in both westward and eastward

directions, and it is more common to switch to the east side, which has later sunset. Since

the position of the border is not exogenous, comparing nearby counties on the opposite

sides of the border could lead to biased results under regression discontinuity design. In

addition, I could exclude counties that do not adopt DST to avoid possible endogeneity

issue.

As for instrument validity, I first check if the average sunset instrument is strongly

correlated with sleep. The F test for the first stage is 0.02 for unconditional model and 0.01

for conditional model and this suggest that this instrument is a weak instrument. Possible

confounding factors include sorting and coastal distance, which could possibly correlates

with the sunset instrument and the determinants that affect the crashes. Individuals

could sort on the eastern of western side of a time zone border, which suggest that there is

correlation between average sunset time and population density. In addition, the average

sunset time could correlate with coastal distance since sunset time is related to longitude.

Coastal distance could affect the risk of vehicle crashes because individuals report better

overall health and mental health when they live close to the seaside (White et al., 2013).
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4.2 Identification Strategy 2: Discontinuity in Sunset Time at

Timezone Border (RDD)

The RDD strategy exploits the sharp discontinuity in sunset time across time zone borders.

Figure 4 shows there is a distinct discontinuity in sunset time around the border, with

sunset occurring approximately one hour later for counties situated on the west side of the

time zone boundary compared to those on the east side. Figure 5 illustrates the process

of determining the distance of counties to the nearest time zone border within a 400-mile

radius using QGIS. Initially, I isolated the time zone borders between each time zone

by employing the ”split features” function. Subsequently, I utilized the ”shortest line”

function between the centroids of each county and the time zone borders.

In the RDD framework, it is essential to assume that there are no disparities in ob-

servable or unobservable attributes that could introduce confounding effects into the out-

comes. Unlike a conventional regression discontinuity design, it is not possible to directly

compare individuals living on opposite sides of the time zone boundary because they

would be residing at different latitudes. To enable the comparison of individuals residing

in neighboring counties, this analysis includes a set of geographic reference variables and

utilizes linear controls for latitude.
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Figure 4: Sunset and Distance to Time Zone Border for Unemployed

This graph shows the discontinuity in sunset time over distance to time zone borders. The
distance are calculated using QGIS. I used sunset time package “suncalc” from R studio to
calculate the average sunset time. The scatterplot is weighted by the number of observations in
distance group. The distance group is calculated using the cut command in Stata.
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Figure 5: Graph of distance of counties to the nearest time zone border within 400 miles
using QGIS.

This graph illustrates the process of determining the distance of counties to the nearest time
zone border within a 400-mile radius using QGIS. Initially, I isolated the time zone borders
between each time zone by employing the ”split features” function. Subsequently, I utilized the
”shortest line” function between the centroids of each county and the time zone borders.
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4.3 Estimation Equations

4.4 IV Strategy

First, I use the instrumental variable method. To estimate the short-run effect of sleep,

I will first use the monthly changes in sunset within a county as the first instrument. I

estimate the following short-run first stage,

Sleepijt = α1Sunsetjt +X ′
ijtδ1 + γ1,j + η1,ijt (1)

short-run second stage,

Crashjt = α2
ˆSleepijt +X ′

itδ2 + γ2,j + η2,ijt (2)

and reduced form,

Crashjt = α3Sunsetjt +X ′
itδ3 + γ3,j + η3,ijt (3)

where Sleepijt is the monthly sleep duration for individual i in county j for date t,

Sunsetjt is the sunset time on that date in that county, γ1,j includes county fixed effects,

Xit is a vector controls including socio-demographics (age, race, sex, education, mari-

tal status, nativity status, and number of children), geographic characteristics (latitude,

longitude, and indicator for large counties), and interview characteristics (indicators for

holiday and weekend). Crashjt is the fatal crashes per 100 million VMT for the county

j at county-year-month level. ηk,jm is the error term for k ∈ {1, 2, 3}.

The second instrument is the annual average sunset, which captures the geographical

differences in sunset time across counties in the United States. I estimate the following

long-run first stage,
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Sleepj = δ1Sunsetj +X ′
jβ1 + ϵ1,j (4)

short-run second stage,

Crashj = δ2 ˆSleepj +X ′
jβ2 + ϵ2,j (5)

and reduced form,

Crashj = δ3Sunsetj +X ′
jβ3 + ϵ3,j (6)

where Sleepj is average monthly sleep duration in location j, Sunsetj is the aver-

age sunset time in that location, Xj is a vector controls including county-level socio-

demographics (age, race, sex, education, marital status, nativity status, and number of

children), geographic characteristics (latitude and indicators for large counties and coastal

counties), and interview characteristics (indicators for holiday and weekend). Crashj is

the average fatal crashes per 100 million VMT at county-month level. ϵk,j is an error term

for k ∈ {1, 2, 3}.

4.5 RDD Strategy

Sleepijt = β0 + β1LSj + β2f(Dj) + β3f(Dj) ∗ LSj +X ′
ijtβ4 + uijt (7)

where Sleepijt is the daily sleep duration for individual i in county j for date t, LSj

is indicator for the county located on the late sunset side of a time zone border, Dj is

the distance to the time zone border or the ”running variable,” Xijt is a vector controls

including individual socio-demographics characteristics (age, race, sex, education, marital

status, nativity status, and number of children), geographic characteristics (latitude and

indicators for large counties and coastal counties), and interview characteristics (indicators
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for holiday and weekend).

Crashj = β0 + β1LSj + β2f(Dj) + β3f(Dj) ∗ LSj +X ′
jβ4 + uj (8)

where Crashj is the average fatal crashes per 100 million VMT at county-month level.,

LSj is indicator for the county located on the late sunset side of a time zone border, Dj

is the distance to the time zone border or the ”running variable,” Xj is a vector con-

trols including county-level socio-demographics (age, race, sex, education, marital status,

nativity status, and number of children), geographic characteristics (latitude and indica-

tors for large counties and coastal counties), and interview characteristics (indicators for

holiday and weekend).

5 Results

5.1 IV Strategy

Table 2 shows the results of the short run effects of sunset and sleep. The first and second

column suggest that there is no major impact of average monthly sleep on crashes in terms

of statistical significance and magnitude under ordinary linear regression (OLS) model.

The third and fourth column show the results for Equation (1), which implies that one

hour late in sunset will lead to about 12 minutes decrease in weekly sleep.

In column (6), the estimates for Equation (2) suggest that increasing monthly sleep

by one hour results in a decrease of 0.015 fatal crashes per 100,000 population at the

county-year-month level. This reduction is equivalent to a 2.4% decrease in fatalities in

the short term, as shown in Table 3 (column 6).

Figure 6 shows the same results for Table 2 and Table 3. In each panel, the left y-axis

denotes the scale for OLS results and the right y-axis depicts the scale for IV estimates.

The top panel indicates that one hour increase in monthly sleep causes 0.015 reduction in
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fatalities under IV (conditional model). The bottom panel suggests that additional one

hour of sleep reduces fatalities by 2.4% under IV (conditional model). As a comparison,

the OLS estimates are close to zero in both panels.

As for the long run results, Table 4 and Table 5 show that there is no significant impact

of sleep on fatalities for Equation (4) to (6). One exception is that the sunset time has

positive and significant impact on crashes in column (7) under the unconditional model,

which is in line with the short-run results, suggesting that a later sunset time increases

fatalities.
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Figure 6: Short Run Effects of Monthly Sleep on Crashes

This graph shows estimates of the short run effects of monthly sleep on crashes using OLS and
IV. The error bars are at 95% confidence intervals for the mean. Sleep denotes monthly average
sleep hours. The dependent variable of crashes refers to fatal crashes per 100,000 population
at county-year-month level. Controls include socio-demographics (age, race, sex, education,
marital status, nativity status, and number of children) and geographic characteristics (latitude,
longitude, and dummy for large counties).
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Table 2: Short Run Effects of Sunset and Sleep

OLS IV(First-Stage) IV(Second-Stage) Reduced-Form

(1) (2) (3) (4) (5) (6) (7) (8)

Crashes Crashes Sleep Sleep Crashes Crashes Crashes Crashes

b/se b/se b/se b/se b/se b/se b/se b/se

Average Monthly Sleep -0.000 -0.000 -0.029∗∗∗ -0.015∗∗∗

(0.00) (0.00) (0.01) (0.00)

Sunset Hour -0.815∗∗∗ -0.778∗∗∗ 0.024∗∗∗ 0.011∗∗∗

(0.24) (0.22) (0.00) (0.00)

Mean 0.81 0.81 261.28 261.28 0.81 0.81 0.81 0.81

Controls No Yes No Yes No Yes No Yes

County FEs No Yes No Yes No Yes No Yes

Observations 36296 36296 36296 36296 36296 36296 36296 36296

F test 11.99 12.55

Notes: Sleep and sunset time are measured in hours by state-county level. The dependent variable of sleep is monthly average sleep hours. The
dependent variable of crashes refers to fatal crashes per 100,000 population at county-year-month level. Controls include socio-demographics (age,
race, sex, education, marital status, nativity status, and number of children), geographic characteristics (latitude, longitude, and indicator for large
counties), and interview characteristics (indicators for holiday and weekend). The standard errors are robust to heteroscedasticity and clustered
at state-county level (reported in parentheses). F test on the excluded instrument. Significance levels: * 0.10, ** 0.05, *** 0.01.
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Table 3: Short Run Effects of Sunset and Sleep (Log of Crashes)

OLS IV(First-Stage) IV(Second-Stage) Reduced-Form

(1) (2) (3) (4) (5) (6) (7) (8)

Crashes Crashes Sleep Sleep Crashes Crashes Crashes Crashes

b/se b/se b/se b/se b/se b/se b/se b/se

Average Monthly Sleep -0.000 -0.000 -0.044∗∗∗ -0.024∗∗∗

(0.00) (0.00) (0.01) (0.01)

Sunset Hour -0.815∗∗∗ -0.778∗∗∗ 0.036∗∗∗ 0.019∗∗∗

(0.24) (0.22) (0.01) (0.00)

Mean -0.41 -0.41 261.28 261.28 -0.41 -0.41 -0.41 -0.41

Controls No Yes No Yes No Yes No Yes

County FEs No Yes No Yes No Yes No Yes

Observations 36296 36296 36296 36296 36296 36296 36296 36296

F test 11.99 12.55

Notes: Sleep and sunset time are measured in hours at county level. Sleep denotes monthly average sleep hours. The dependent variable of crashes
refers to fatal crashes per 100,000 population at county-year-month level. Controls include socio-demographics (age, race, sex, education, marital
status, nativity status, and number of children), geographic characteristics (latitude, longitude, and indicator for large counties), and interview
characteristics (indicators for holiday and weekend). The standard errors are robust to heteroscedasticity and clustered at county level (reported
in parentheses). F test on the excluded instrument. Significance levels: * 0.10, ** 0.05, *** 0.01.
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Table 4: Long Run Effect of Sunset on Sleep and Fatal Crashes

OLS IV(First-Stage) IV(Second-Stage) Reduced-Form

(1) (2) (3) (4) (5) (6) (7) (8)

Crashes Crashes Sleep Sleep Crashes Crashes Crashes Crashes

b/se b/se b/se b/se b/se b/se b/se b/se

Average Monthly Sleep -0.00 -0.00 -0.32 0.90

(0.00) (0.00) (2.32) (99.51)

Sunset Hour -0.35 -0.02 0.11∗∗∗ -0.02

(2.51) (2.50) (0.04) (0.04)

Mean 0.97 0.97 261.39 261.39 0.97 0.97 0.97 0.97

Controls No Yes No Yes No Yes No Yes

County FEs No No No No No No No No

Observations 396 396 396 396 396 396 396 396

F test 0.02 0.00

Notes: Sleep and sunset time are measured in hours by county level. The dependent variable of sleep is monthly average sleep hours in a county.
The dependent variable of crashes refers to fatal crashes per 100,000 population at county level. Controls include socio-demographics (age, race,
sex, education, marital status, nativity status, and number of children), geographic characteristics (latitude and indicators for large counties and
coastal counties), and interview characteristics (indicators for holiday and weekend). The standard errors are robust to heteroscedasticity and
clustered at state-county level (reported in parentheses). F test on the excluded instrument. Significance levels: * 0.10, ** 0.05, *** 0.01.
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Table 5: Long Run Effect of Sunset on Sleep and Log of Fatal Crashes

OLS IV(First-Stage) IV(Second-Stage) Reduced-Form

(1) (2) (3) (4) (5) (6) (7) (8)

Crashes Crashes Sleep Sleep Crashes Crashes Crashes Crashes

b/se b/se b/se b/se b/se b/se b/se b/se

Average Monthly Sleep -0.00 -0.00 -0.45 0.65

(0.00) (0.00) (3.21) (72.16)

Sunset Hour -0.35 -0.02 0.16∗∗∗ -0.01

(2.51) (2.50) (0.05) (0.03)

Mean -0.22 -0.22 261.39 261.39 -0.22 -0.22 -0.22 -0.22

Controls No Yes No Yes No Yes No Yes

County FEs No No No No No No No No

Observations 396 396 396 396 396 396 396 396

F test 0.02 0.00

Notes: Sleep and sunset time are measured in hours by county level. The dependent variable of sleep is monthly average sleep hours in a county.
The dependent variable of crashes refers to fatal crashes per 100,000 population at county level. Controls include socio-demographics (age, race,
sex, education, marital status, nativity status, and number of children), geographic characteristics (latitude and indicators for large counties and
coastal counties), and interview characteristics (indicators for holiday and weekend). The standard errors are robust to heteroscedasticity and
clustered at state-county level (reported in parentheses). F test on the excluded instrument. Significance levels: * 0.10, ** 0.05, *** 0.01.
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5.2 RDD Strategy

The first stage results of the RDD study reveal an important caveat. Previous research

conducted by Giuntella and Mazzonna (2019) focused on the time frame from 2003 to

2013 and found that employed individuals tend to sleep less when living on the later

sunset side of the time zone border. When I replicate this analysis using the same dataset

and period from 2004 to 2013, my findings closely align with Giuntella and Mazzonna

(2019). However, an intriguing twist emerges when I extend the analysis to include data

collected from 2014 to 2019. During this later period, I observe a contrary trend, wherein

employed individuals actually tend to sleep more if they reside on the later sunset side of

the time zone border.

Figure 7 illustrates the discontinuity in sleep and crash rates in relation to the distance

from the time zone border. The first row indicates that employed individuals located on

the right side of the time zone border have similar sleep and fatality rates compared to

those on the left side (2004-2019). The second row demonstrates that employed people

living on the side of the time zone border with later sunsets experience less sleep and

fewer crashes (2004-2014), which is consistent with results by Giuntella and Mazzonna

(2019). Conversely, the third row shows that individuals on the later sunset side have

more sleep and higher fatality rates (2014-2019).

The first column of Figure 7 shows the relationship between sleep and distance to the

time zone border. The data indicates that employed individuals on the right side of the

border have similar sleep compared to those on the left side from 2004 to 2019. From

2004 to 2014, people on the side with later sunsets have reduced sleep, supporting previous

research by Giuntella and Mazzonna (2019). However, from 2014 to 2019, individuals on

the later sunset side have increased sleep.

Similar results are observed in Table 6, Table 7, and Table 8. Specifically, the findings

in column 3 and 6 of Table 6 indicate that the impact of the late sunset side on sleep is both
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statistically significant and of small magnitude. Most columns in Table 7 demonstrate that

employed individuals sleep less on the late sunset side, with statistically significant results.

Notably, column 6 reveals that residing in the late sunset side can lead to an average

reduction in sleep duration by 21 minutes. However, while column 4 and 5 in Table 8

show positive and significant effects, column 6 does not reach statistical significance. This

indicates that there may be other factors that could have affected the results in the later

period from 2014 to 2019.

Moving on to the second stage, the results from Table 9, Table 10, and Table 11 indicate

that there are almost no statistically significant and consistent effects of sunsets on sleep.

However, it is important to note that the negative and significant effect observed in

column 2 of Table 9 and Table 10 becomes smaller and loses significance after accounting

for county fixed effects. Furthermore, the signs of the effects are not consistent when

using the 250 mile bandwidth and the 100 mile bandwidth. In Table 11, column 6 shows

a negative and significant effect, but the other columns exhibit inconsistent signs and lack

statistical significance.

In summary, my RDD analysis reveals that employed individuals residing on the later

sunset side of the time zone border experienced a decrease in sleep duration from 2004

to 2013, which aligns with the findings of Giuntella and Mazzonna (2019). However,

from 2014 to 2019, there was an increase in sleep duration. Furthermore, the second-

stage results indicate that the impact of late sunset on sleep is not consistently significant

across various time periods and bandwidths.
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Figure 7: Sleep and Crash Discontinuity

The figure illustrates the discontinuity in sleep and crashes in relation to the distance from the
time zone border. Data are from ATUS and FARS (2004-2019). Each point represents the the
mean residuals (10 miles average) of sleep on a set of geographical controls (a linear control for
latitude and dummy for large counties). The right figure shows the discontinuity in crash and
distance to time zone border. Each point represents the mean residuals (10 miles average) of
the crash per 100,000 population on a set of geographical controls (a linear control for latitude
and dummy for large counties). The scatterplot is weighted by the number of observations in
distance group. The distance group is calculated using the cut command in Stata.
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Figure 8: Sleep and Distance to Time Zone Border for Employed

This figure show the discontinuity in sleep and distance to time zone border for employed and
unemployed individuals. Data are from ATUS (2004-2019). Each point represents the the mean
residuals (10 miles average) of sleep on a set of geographical controls (a linear control for latitude
and dummy for large counties) on the right panel. The scatterplot is weighted by the number
of observations in distance group. The distance group is calculated using the cut command in
Stata.
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Figure 9: Sleep and Distance to Time Zone Border for Employed

This figure show the discontinuity in sleep and distance to time zone border for employed and
unemployed individuals. Data are from ATUS (2004-2013). Each point represents the the mean
residuals (10 miles average) of sleep on a set of geographical controls (a linear control for latitude
and dummy for large counties) on the right panel. The scatterplot is weighted by the number
of observations in distance group. The distance group is calculated using the cut command in
Stata.
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Figure 10: Sleep and Distance to Time Zone Border for Employed

This figure show the discontinuity in sleep and distance to time zone border for employed and
unemployed individuals. Data are from ATUS (2014-2019). Each point represents the the mean
residuals (10 miles average) of sleep on a set of geographical controls (a linear control for latitude
and dummy for large counties) on the right panel. The scatterplot is weighted by the number
of observations in distance group. The distance group is calculated using the cut command in
Stata.
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Figure 11: Sleep and Distance to Time Zone Border

This figure show the discontinuity in sleep and distance to time zone border. Data are from
ATUS (2004-2019). Each point represents the mean daily sleep hour on the left panel and mean
residuals (10 miles average) of sleep on a set of geographical controls (a linear control for latitude
and dummy for large counties) on the right panel. The scatterplot is weighted by the number
of observations in distance group. The distance group is calculated using the cut command in
Stata.
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Figure 12: Sleep and Distance to Time Zone Border for Employed

This figure show the discontinuity in sleep and distance to time zone border for employed
individuals. Data are from ATUS (2004-2019). Each point represents the mean daily sleep hour
on the left panel and mean residuals (10 miles average) of sleep on a set of geographical controls
(a linear control for latitude and dummy for large counties) on the right panel. The scatterplot
is weighted by the number of observations in distance group. The distance group is calculated
using the cut command in Stata.
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Figure 13: Sleep and Distance to Time Zone Border for Unemployed

This figure show the discontinuity in sleep and distance to time zone border for unemployed
individuals. Data are from ATUS (2004-2019). Each point represents the mean daily sleep hour
on the left panel and mean residuals (10 miles average) of sleep on a set of geographical controls
(a linear control for latitude and dummy for large counties) on the right panel. The scatterplot
is weighted by the number of observations in distance group. The distance group is calculated
using the cut command in Stata.
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Figure 14: Crash and Distance to Time Zone Border

This figure show the discontinuity in crash and distance to time zone border. Data are from
ATUS (2004-2019). Each point represents the mean crash per 100,000 population on left panel
and mean residuals (10 miles average) of the crash per 100,000 population on a set of geographical
controls (a linear control for latitude and dummy for large counties) on the right panel. The
scatterplot is weighted by the number of observations in distance group. The distance group is
calculated using the cut command in Stata.
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Table 6: Effects of Locating on the Late Sunset Side on Sleep for Employed (2004-2013)

(1) (2) (3) (4) (5) (6) (7)

Sleep Hours Sleep Hours Sleep Hours Sleep Hours Sleep Hours Sleep Hours Sleep ≥ 8hrs

b/se b/se b/se b/se b/se b/se b/se

Late Sunset Side=1 -0.158 0.035 -0.241∗ 0.119 0.354∗∗ -0.009 -0.009

(0.12) (0.11) (0.14) (0.17) (0.16) (0.18) (0.03)

Mean 8.59 8.59 8.59 8.59 8.59 8.59 8.59

Controls No Yes Yes No Yes Yes Yes

County FEs No No Yes No No Yes No

Bandwidth (miles) 250 250 250 100 100 100 250

Observations 27542 27542 27542 7172 7172 7172 27542

Notes: Data are from ATUS (2004-2019). Estimates include the distance to the time-zone boundary and the interaction with the late sunset
border, socio-demographics (age, race, sex, education, marital status, nativity status, and number of children), geographic characteristics (latitude,
longitude, and indicator for large counties), and interview characteristics (indicators for holiday and weekend). The standard errors are robust to
heteroscedasticity and clustered at state-county level (reported in parentheses). Significance levels: * 0.10, ** 0.05, *** 0.01.
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Table 7: Effects of Locating on the Late Sunset Side on Sleep for Employed (2004-2013)

(1) (2) (3) (4) (5) (6) (7)

Sleep Hours Sleep Hours Sleep Hours Sleep Hours Sleep Hours Sleep Hours Sleep ≥ 8hrs

b/se b/se b/se b/se b/se b/se b/se

Late Sunset Side=1 -0.443∗∗∗ -0.273∗∗∗ -0.229 -0.363∗ -0.066 -0.356∗∗ -0.077∗∗

(0.10) (0.10) (0.15) (0.19) (0.10) (0.17) (0.03)

Mean 8.49 8.49 8.49 8.53 8.53 8.53 0.61

Controls No Yes Yes No Yes Yes Yes

State FEs No No Yes No No Yes No

Bandwidth (miles) 250 250 250 100 100 100 250

Observations 8305 8305 8305 2598 2598 2598 8305

Notes: Data are from ATUS (2004-2019). Estimates include the distance to the time-zone boundary and the interaction with the late sunset
border, socio-demographics (age, race, sex, education, marital status, nativity status, and number of children), geographic characteristics (latitude,
longitude, and indicator for large counties), and interview characteristics (indicators for holiday and weekend). The standard errors are robust to
heteroscedasticity and clustered at state-county level (reported in parentheses). Significance levels: * 0.10, ** 0.05, *** 0.01.
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Table 8: Effects of Locating on the Late Sunset Side on Sleep for Employed (2014-2019)

(1) (2) (3) (4) (5) (6) (7)

Sleep Hours Sleep Hours Sleep Hours Sleep Hours Sleep Hours Sleep Hours Sleep ≥ 8hrs

b/se b/se b/se b/se b/se b/se b/se

Late Sunset Side=1 0.385∗∗ 0.657∗∗∗ 0.023 0.405∗ 0.597∗∗∗ 0.404 0.090∗∗

(0.19) (0.14) (0.19) (0.21) (0.19) (0.26) (0.04)

Mean 8.63 8.63 8.63 8.64 8.64 8.64 0.65

Controls No Yes Yes No Yes Yes Yes

State FEs No No Yes No No Yes No

Bandwidth (miles) 250 250 250 100 100 100 250

Observations 3605 3605 3605 1108 1108 1108 3605

Notes: Data are from ATUS (2004-2019). Estimates include the distance to the time-zone boundary and the interaction with the late sunset
border, socio-demographics (age, race, sex, education, marital status, nativity status, and number of children), geographic characteristics (latitude,
longitude, and indicator for large counties), and interview characteristics (indicators for holiday and weekend). The standard errors are robust to
heteroscedasticity and clustered at state-county level (reported in parentheses). Significance levels: * 0.10, ** 0.05, *** 0.01.
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Table 9: Effects of Locating on the Late Sunset Side on Log of Fatal Crashes for Employed (2004-2019)

(1) (2) (3) (4) (5) (6)

Crashes Crashes Crashes Crashes Crashes Crashes

b/se b/se b/se b/se b/se b/se

Late Sunset Side=1 -0.198 -0.347∗∗ -0.260∗ 0.246 0.185 -0.033

(0.18) (0.14) (0.16) (0.21) (0.14) (0.26)

Mean 8.59 8.59 8.59 8.59 8.59 8.59

Controls No Yes Yes No Yes Yes

County FEs No No Yes No No Yes

Bandwidth (miles) 250 250 250 100 100 100

Observations 27542 27542 27542 7172 7172 7172

Notes: Data are from FARS and ATUS (2004-2019). Estimates include the distance to the time-zone boundary and the interaction with the late
sunset border, socio-demographics (age, race, sex, education, marital status, nativity status, and number of children), geographic characteristics
(latitude, longitude, and indicator for large counties), and interview characteristics (indicators for holiday and weekend). The standard errors are
robust to heteroscedasticity and clustered at state-county level (reported in parentheses). Significance levels: * 0.10, ** 0.05, *** 0.01.
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Table 10: Effects of Locating on the Late Sunset Side on Log of Fatal Crashes for Employed (2004-2013)

(1) (2) (3) (4) (5) (6)

Crashes Crashes Crashes Crashes Crashes Crashes

b/se b/se b/se b/se b/se b/se

Late Sunset Side=1 -0.259 -0.384∗∗ -0.220 0.249 0.233 0.033

(0.21) (0.18) (0.18) (0.19) (0.17) (0.27)

Mean 8.55 8.55 8.55 8.55 8.55 8.55

Controls No Yes Yes No Yes Yes

County FEs No No Yes No No Yes

Bandwidth (miles) 250 250 250 100 100 100

Observations 20027 20027 20027 5160 5160 5160

Notes: Data are from FARS and ATUS (2004-2013). Estimates include the distance to the time-zone boundary and the interaction with the late
sunset border, socio-demographics (age, race, sex, education, marital status, nativity status, and number of children), geographic characteristics
(latitude, longitude, and indicator for large counties), and interview characteristics (indicators for holiday and weekend). The standard errors are
robust to heteroscedasticity and clustered at state-county level (reported in parentheses). Significance levels: * 0.10, ** 0.05, *** 0.01.
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Table 11: Effects of Locating on the Late Sunset Side on Log of Fatal Crashes for Employed (2014-2019)

(1) (2) (3) (4) (5) (6)

Crashes Crashes Crashes Crashes Crashes Crashes

b/se b/se b/se b/se b/se b/se

Late Sunset Side=1 -0.083 -0.270∗∗ -0.319∗ 0.184 0.009 -0.556∗∗

(0.19) (0.13) (0.17) (0.29) (0.15) (0.25)

Mean 8.69 8.69 8.69 8.69 8.69 8.69

Controls No Yes Yes No Yes Yes

County FEs No No Yes No No Yes

Bandwidth (miles) 250 250 250 100 100 100

Observations 7515 7515 7515 2012 2012 2012

Notes: Data are from FARS and ATUS (2014-2019). Estimates include the distance to the time-zone boundary and the interaction with the late
sunset border, socio-demographics (age, race, sex, education, marital status, nativity status, and number of children), geographic characteristics
(latitude, longitude, and indicator for large counties), and interview characteristics (indicators for holiday and weekend). The standard errors are
robust to heteroscedasticity and clustered at state-county level (reported in parentheses). Significance levels: * 0.10, ** 0.05, *** 0.01.
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6 Robustness Check

Confounding factors such as weather, road conditions, and ambient light may be correlated

with both the sunset hour and crashes, so I control for seasonality by adding time fixed

effects. For instance, the road could be icy in the northern regions during winters, which

poses a higher risk of fatal vehicle crashes. Table 12 includes year, year-month, and county-

month fixed effects, and the results all show similar estimates as Table 2. The impact

of sleep on the log of crashes is similar to the original estimates after including controls

for seasonality, which indicates that additional sleep has a short-run negative impact on

fatalities. For example, columns (2) to (5) imply that one extra hour of monthly sleep

causes a 2.4% reduction in the log of fatal crashes per 100,000 population.

Road type could affect fatal vehicle crashes since the speed is different on various roads.

Table 13 illustrates the short-run effects of sleep on fatal vehicle crashes by types of roads,

such as highways, county roads, and local streets. The road type is available in FARS

since 1987, and I categorize the road as a highway if it is an interstate, U.S. highway,

or state highway. In addition, I classify the road as a local street if it is a township,

municipality, or frontage road. The results show that the impact of sleep on fatalities is

mostly driven by the fatalities on highways. Specifically, column (2) indicates that one

additional hour of monthly sleep results in a 1.9% reduction in fatalities on highways.

Light could play a crucial role in fatal vehicle crashes as more ambient light could

create a safer driving environment. If the sunset is late by one hour, then additional

light during the evening should reduce the risk of crashes. Similarly, decreasing light by

one hour in the morning would increase the risk of fatalities. To test this hypothesis, I

will decompose the crashes into morning crashes (two hours more or less from the local

average sunrise time), evening crashes (two hours more or less from the local average

sunset time), least light-impacted daytime crashes (the remaining hours), and nighttime
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crashes following a similar setup from Smith (2016).

Table 14 provides the short-run effect of sleep on fatalities by light condition. Columns

(2) and (3) suggest that sleep has a statistically insignificant impact on crashes during

the morning and evening. Column (4) suggests that increasing monthly sleep by one hour

could lead to about a 2.1% reduction in fatal crashes per 100,000 population. The result

indicates that the impact of sleep on fatalities is mostly driven by the impact on daytime

crashes.
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Table 12: Short Run IV Estimates of the Effects of Sleep on Log of Fatal Crashes (Control for Seasonality)

(1) (2) (3) (4) (5)

Crashes Crashes Crashes Crashes Crashes

b/se b/se b/se b/se b/se

Average Monthly Sleep -0.044∗∗∗ -0.024∗∗∗ -0.025∗∗∗ -0.023∗∗∗ -0.024∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)

Mean -0.41 -0.41 -0.41 -0.41 -0.41

Controls No Yes Yes Yes Yes

County FEs No Yes Yes Yes Yes

Year FE No No Yes No No

Year-Month FE No No No Yes No

County-Month FE No No No No Yes

Observations 36296 36296 36296 36296 36296

Note: Sleep and sunset time are measured in hours at county-year-month level. The dependent variable of sleep
is monthly average sleep hours. The dependent variable of crashes refers to fatal crashes per 100,000 population at
state-county-month level. Controls include socio-demographics (age, race, sex, education, marital status, nativity
status, and number of children), geographic characteristics (latitude, longitude, and indicator for large counties), and
interview characteristics (indicators for holiday and weekend). Seasonality are captured by adding time fixed effects.
The standard errors are robust to heteroscedasticity and clustered at state-county level (reported in parentheses). F
test on the excluded instrument. Significance levels: * 0.10, ** 0.05, *** 0.01
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Table 13: Short Run Effects of Sleep on Log of Fatal Vehicle Crashes by Types of Roads

(1) (2) (3) (4)

Crashes (All Roads) Crashes (Highway) Crashes (County Road) Crashes (Local Street)

b/se b/se b/se b/se

Average Monthly Sleep -0.024∗∗∗ -0.019∗∗ -0.006 -0.002

(0.01) (0.01) (0.00) (0.01)

Mean -0.41 -0.92 -1.33 -1.27

Controls Yes Yes Yes Yes

County FEs Yes Yes Yes Yes

Observations 36296 30623 16172 23986

Notes: Sleep is measured in hours at county-year-month level. The dependent variable of sleep is monthly average sleep hours. The dependent
variable of crashes refers to fatal crashes per 100,000 population at county-year-month level by different types of roads. Controls include socio-
demographics (age, race, sex, education, marital status, nativity status, and number of children), geographic characteristics (latitude, longitude, and
indicator for large counties), and interview characteristics (indicators for holiday and weekend). The standard errors are robust to heteroscedasticity
and clustered at state-county level (reported in parentheses). F test on the excluded instrument. Significance levels: * 0.10, ** 0.05, *** 0.01.
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Table 14: Short Run Effects of Sleep on Log of Fatal Vehicle Crashes by Light Condition

(1) (2) (3) (4) (5)

Crashes (All Hours) Crashes (Morning) Crashes (Evening) Crashes (Daytime) Crashes (Nighttime)

b/se b/se b/se b/se b/se

Average Monthly Sleep -0.024∗∗∗ 0.025 0.155 -0.021∗∗∗ -0.000∗∗∗

(0.01) (0.02) (0.12) (0.01) (0.00)

Mean -0.41 -1.71 -1.43 -1.28 -1.88

Controls Yes Yes Yes Yes Yes

County FEs Yes Yes Yes Yes Yes

Observations 36296 18075 23521 27022 28100

Notes: Sleep is measured in hours at county-year-month level. The dependent variable of sleep is monthly average sleep hours. The dependent
variable of crashes refers to fatal crashes per 100,000 population at county-year-month level by different types of roads. Controls include socio-
demographics (age, race, sex, education, marital status, nativity status, and number of children), geographic characteristics (latitude, longitude, and
dummy for large counties), and interview characteristics (indicators for holiday and weekend). The standard errors are robust to heteroscedasticity
and clustered at state-county level (reported in parentheses).“Morning” is defined as +/- two hours from the average sunrise time in that county.
“Evening” is defined as +/- two hours from the average sunset time in that county. Significance levels: * 0.10, ** 0.05, *** 0.01.
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7 Conclusion

Sleep deprivation is known to have negative effects on daytime alertness and attention,

potentially increasing the risk of fatal vehicle crashes. While laboratory studies in the

medical field have established a link between sleep deprivation and adverse health out-

comes, there is limited understanding of the causal impact of sleep and the consequences

of sleep deprivation in real-world situations. This paper aims to investigate the causal im-

pact of sleep on fatal vehicle crashes in the United States, utilizing IV and RDD methods,

as well as data from the ATUS and FARS.

By employing a seasonal, short-run IV approach, the study reveals that a one-hour

delay in sunset results in a decrease of approximately 12 minutes in weekly sleep duration.

Furthermore, a one-hour increase in monthly sleep is associated with a 2.4% reduction

in fatalities. However, when employing a geographical, long-run IV method, statistically

significant results were not obtained.

The RDD analysis highlights a key finding: from 2004 to 2013, employed individuals

on the later sunset side of the time zone border slept less, consistent with earlier research.

Surprisingly, from 2014 to 2019, they actually slept more on the later sunset side. The

second-stage results of the RDD show no consistent, statistically significant effects of

sunsets on sleep and fatal vehicle crashes across different time periods and bandwidths.

This paper could help in the development of an effective policy solution concerning

Daylight Saving Time (DST) and clock changes. Additionally, it seeks to provide insights

into designing social schedules that prioritize healthy sleep patterns, which are essential for

overall well-being and productivity. The findings underscore the importance of adequate

sleep for health and safety and suggest potential policy implications for optimizing work

and school schedules to promote healthier sleep patterns. Future research could explore

further dimensions of sleep’s impact on other health and productivity outcomes.
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